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ABSTRACT

Results from an experimental investigation of strut support

interference on high angle of attack aerodynamic measurements are

presented . The influence of the strut support on the leeward wake

structure was investigated by means of a two-dimensional experiment

of a cylinder—splitter plate combination. Pressure distributions ,

pressure drag coefficient and wake flow visualization data for various

cylinder—splitter plate combinations are presented for high subcritical

Reynolds numbers. The influence of plate position and size on the

pressure drag coefficient were also examined . The results show the

splitter plate can alter the vortex wake formation signifit-antly and,

as a consequence, reduce the pressure drag coefficient by as much as

30% or more. Plate sizes of 0.5, 1.1 and 1.5 diameter were tested with

the 1.1 diameter plate yielding the largest drag reduction . 



I
NOMENCLATURE

CD Cylinder pressure drag coefficient (drag/unit
length)/(q0,D) .

CDc Crossflow drag coefficient (drag/unit length)/
(qD).

CN Normal force coefficient (normal force)!
(q S).

CM Pitching moment coefficient (pitching moment)/
(q SD) , measured about body mid—point.

Cp Pressure coefficient (P5—P0)/q~,.

CPb Base pressure coefficient (Ps-Po)/q .

D Cylinder or body diameter.

Body length .

P0 Freestream static pressure .

P5 Local static pressure on the cylinder.

Freestream dynamic pressure .
~
p U2.

Re Reynolds number , U D/ v~

S Body cross—sectional area.

Sb Cross—sectional area at the base of the missile.

Sp Planform area.

U Freestream velocity .

V Body volume.

X Distance between cylinder and splitter plate.

Moment reference center measured from the nose.

a Angle of attack.

Ratio of drag coefficients of finite cylinder to
infinite cylinder.

0 Azimuth position on the cylinder.

Freestream density .

Kinematic viscosity .



INTRODU CTiON

In recent years we have witnessed a radical change in what is

referred to as high angle of attack flight. Previously , high angle of

attack flight would have been characterized as angles approaching 30

degrees. However, many modern aerospace vehicles are being tested at

angles far greater than 30 degrees. For example, a certain class of

thrust—vector—controlled missiles have been tested for angles of

attack up to 180 degrees. In the subsonic and transonic Mach number

range various anomalies occur in the measured force and moment data .

These anomalies have been attributed to support interference .

To perform aerodynamic testing on slender aerodynamic configurations

over a wide angle of attack regime, various support combinations (e.g.

aft sting, strut or nose sting) are usually required . Figure 1 shows

some of the types of support systems that might be used in the high

angle of attack region. Support interference, in general , is quite small

for most of the test conditions. That is, the mis—match in measured

force coefficients at overlapping angles of attack for the aft sting,

strut and nose sting supports is usually quite small. However, noticeable

differences in the force and moment coefficients have been observed in

subsonic and transonic flows. Figures 2 and 3 illustrate the magnitude

of the support interference. These data were obtained by Dietz and

Alstatt, using a 10 caliber tangent ogive cylinder model. The largest

discrepancies occur in the normal force coefficient near 90 degrees angle

of attack. Their data also indicates that the influence of the sting

support system on the aerodynamic measurements is quite small compared to

the interference associated with the strut support system.

The normal force and pitching moment coefficients of a slender body

of revolution at large angle of attack can be related to the crossflow
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drag coefficient of an infinite cylinder by means of the following

formulas: 1, 3

CN = sin2a cos + r~ CDc 
~E sin2a

r V — S b  ( i — X m)l aCM
SD

S Xm~~
S

The first term in the above equations is the familiar slender body result

and the second term is the viscous crossflow contribution .

The influence of the s t rut  support on the aerod ynamic cha racteristics H

of a slender body at large angles of attack may act in a manner similar to

tha t of a wake sp1itt~~ p late located downstream of an inf in i te  cy linder in

a crossflow. Experiments by Roshkot’, Bearman5, Gerrard6 and Apelt , West

and Szewczyk 7 exami ned the i.”fluence of wake spl i t ter  p lates on the f low

past bluff bodies. The collective results from these investigations showed

that a splitter plate placed parallel with the cylinder axis and the free—

stream could obstruct the vortex formation and lessen the extreme reduction

in pressure in the wake. Most of these tests were performed at low sub—

critical Reynolds numbers for Mach numbers less than M = 0.44.  Roshko did

investigate the effect of the splitter plate at super—critical Reynolds

numbers. In this region, the plate was found to be ineffective , primarily

due to the fact that the wake is not characterized by the dominate vortex

flows but by a disorganized turbulent wake.

The flow around a cylinder is extremely complicated and is dependent
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upon the crossf low Mach and Reynolds numbers. Additional insight into

the flow patterns around circular cylinders in the critical Mach number

range are highlighted in the paper by Nauman, Morsbach and Kramer9. The

variation in drag and wake flows as a function of Mach number and

Reynolds number is presented in Figure 4. For the curve marked by the

Roman numeral I, the critical Mach number occurs at a subcritical

Reynolds number. Local shock waves develop , which prevent the separation

point from moving downstream, even when boundary layer becomes turbulent.

Thus, when the critical Reynolds number is reached, the flow pattern

remains essentially unchanged . On the other hand, on the curve marked by

Roman numeral II, the critical Mach number occurs at super—critical

Reynolds number. Now, in this case, the boundary layer is turbulent at

the point of separation. Once again, shock waves develop on the cylinder

and, because of the pressure rise across the shock, the separation point

is fixed at a smaller azimuth angle. As a result, the wake is wider and

again a vortex street is formed . The local shock waves occurring on the

cylinder were found to alternate from side to side at the same frequency

as the shedding of the vortices. As the higher Mach number flow has a

distinct vortex wake, the influence of the splitter plate may again

become effective in reducing the crossflow drag coefficient. Figure 5

shows several photographs of the wake patterns for the higher Mach number

flows.

The purpose of the investigation reported in this paper was to

examine the influence of a wake splitter plate on the pressure distribu—

tion and wake characteristics of a two—dimensional cylinder in the high

subcritical Reynolds number regime for Mach numbers above and below the

critical Mach number for a circular cylinder. The results for the sub—

L —. - -
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critical Mach and Reynolds numbers are presented in the following section.

It is hoped tha t these data can be used to improve the under standing of

the influence of strut support interference on slender models at large

angles of attack.

L . _______________________________
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EXPERIMENTA L FACILITIES

All tests and data from the investigation reported in this paper were

made in the Notre Dame low—turbulence subsonic wind tunnel . The tunnel

is an indraft tunnel powered by a variable speed 15 horsepower electric

moto r.  Low turbulence is achieved by using a large contraction ratio

and anti—turbulence screen. There are twe].ve anti—turbulence screens

preceding the reduction cone . The f i r s t  seven are 14 x 18 mess bronze

screens , followed by five 20 mesh screens of nylon marquiset te . The

comb ination of large contraction and ant i—turbulence  screens yields

turbulence levels of less than 0. 2 % .

A hollow aluminum cyl inder , having a length ( 24 inches /61 cm)

to diameter(2 inches /5.08 cm) of 12 was used in these tests. The model

had 22 pressure taps; 16 of the taps were located at the center of the

model and were positioned from _30 0 to 1950 around the circumference in

150 increments. The remaining 6 pressure taps were located along the

span of the model at the 1800 position . These pressure taps were used

to check the qual i ty  of the flow , i.e. check for “wash—out ” due to the

boundary layer . By examining the pressure on these 6 taps it was

determined that end plates were not needed to eliminate any “wash—out”.

The roughness of the cylinder , though not measu red exactly,  could

be considezed as very smooth. To ensure a smooth finish the model was

center—less ground prior to the s tar t  of the testing program.

The spl i t te r  plate was made of steel. Aluminum was originally

chosen but  was found to flutter in the wake of the cylinder , even at

very slow speeds. Using steel , this problem was eliminated except at

the very high speeds. The plates were designed to span the tunnel and had

L --
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dimensions of 1/4 : x 1” (0.64 cm x 2 .54  cm) , 1/4” x 2 .25”  (0.64 cm x

5.72 cm) and 1/4” x 3” (0.64 cm x 7 .62 cm) which corresponds to plate

lengths ot 0 .5D , l . lD and l. 5D , respectively.

All pressure distr ibutions were measured , using a 36—tap manometer

boa rd. The manometer was filled wi th  uni ty oil and slanted at 3Ø0 to the

horizontal .  This manometer is graded in mill imeters, thus giving a very

fine resolution to any readings.

Reynolds number var ia t ions  were achieved by vary ing the tunnel

velocity . The velocities of 45 f ps/13.9 rn/see, 69.5 fps/21.4 rn/sec and

85 f p s / 2 6 . 2  rn/ sec were used in this investigation.

With the model in place , the area blockage rat io was 8%. For this

blockage ratio onl y small correct ions to the measured drag coeff ic ient

are required . The results presented in the following section are the

uncorrected measured data . 

-~~~~~
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DISCUSSION OF RESULTS

The primary objective of this study was to examine the influence

of a splitter plate on the wake and pressure drag coefficient of a

right circular cylinder placed normal to the flow direction . Figure 6

shows the pressure distribution in terms of the local pressure

coefficient without the splitter plate . Af te r  the laminar boundary

layer separates,the pressure coefficient increases slightly . This can

be seen more clearly in Figure 7 where the pressure distribution is

plotted as a function of the angular position. Figures 8 and 9 are

similar plots; however , for these cases, a splitter plate is located

0.53 diameters behind the cylinder.  These figures show a significant

change in the leeward pressure coefficient as compared to the no plate

condition . The splitter plate lessens the extreme pressure reduction

in the wake, which results in a substantial drag reduction . For this

par ticular case , the drag coefficien t is reduced from 1.088 to 0.811 or

approximately 25%.

Figures 10, h and 12 show the effect of varying Reynolds numbers,

holding plate size constant. All three plates show a pronounced drop

in the drag coefficient once the plate is introduced and abutted on to

the cylinder. With each plate size a distinc t region was found where

the plate became ineffective in reducing the cylinder drag coefficient.

Near this critical point a :light variation in plate position can cause

the flow regime to switch from the low drag profile to the high drag

profile or vice versa. For the two larger plates (l.1D and l.5D), the

drag coefficient decreases as the plate is moved downstream of the

cylinder, until the plate reaches a position of approximately 2.5 diameters.
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At this point , the drag suddenly returns to a value similar to the

cylinder without a splitter plate. The smallest plate exhibits a

somewhat di fferent trend , as noted in Figure 10. For this case, the

drag coefficient increases as the plate is moved away from the cylinder

until it reaches a position of approximately 0.6 diameter downstream.

At this point, the drag coefficient decreases until the plate reaches an

X/D of 1.8. Further movement of the plate results in a drag coefficient

similar to the cylinder without a splitter plate. Figures 13, 14 and

15 show the influence of plate size on the drag coefficient for fixed

Reynolds numbers. These figures show the amount of drag reduction is

dependent upon plate size, with the 1.1 diameter plate producing the

largest reduction. This result is simila r to the f i ndings of Apelt ,

West and Szewczyk7. The influence of plate size on the base pressure

coefficient is shown in Figure 16. The largest reduction in the base

pressure coefficient is caused by the 1.lD sp l i t t e r  plate.

As noted earlier , the splitter plate inhibits the vortex formation

around the cylinder. Measurements of the vortex shedding frequency were

made with a single component hot wire probe. The results of this inves-

tigation are presented in Figure 17. As the figure illustrates, the

frequency or Strouhal number is reduced by the presences of the wake

splitter plate.

The reduction in the drag coefficien t is a direct result of the

vortex wake pattern being ii.~iibited . This is shown clearly in the

photographs comprising Figure 18. The first photograph shows the wake

pattern for a cylinder without a splitter plate and the next three show

the wake pattern for various splitter plate locations. With the plate

located immediately behind the cylinder, the vortex shedding is clearly
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inhibited .

Note that, as the plate is moved beyond 2.5 diameters, the vortex

pattern re—establishes itself immediately behind the cylinder , as though

the plate were not present.

L -
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CONCLUSIONS

Based on the experiments performed as part of this investigation ,

the following conclusions were drawn:

1. The wake splitter plate was found to reduce the pressure

drag coefficient sufficiently , with the largest reductions

occurring for the 1.1 diameter plate.

2. The influence of the splitter plate on the cylinder pressure

drag coefficient was found to vary slightly over the range

of Reynolds numbers tested,45,000 — 83,000. High Reynolds

numbers were tested ; however, flutter problems developed

with splitter. The higher Reynolds number data, 150,000,

exhibited a similar trend until the onset of flutter .

3. With each plate size a distinct region was found where the

plate became ineffective in reducing the cylinder drag

coefficient. Near this critical point small movements of

the plate position in either the upstream or downstream

directions were found to cause the wake to switch from the

high to low drag profile or vice versa.

4. Finally, th~ two—dimensional experiments reported in this

paper provide some insight into the complicated aerodynamic

interference that may be presen t when testing aerodynamic

models at large angles of attack with a strut support system.
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